Menofia University	Subject: Introduction to
Faculty of Engineering Shebien El-kom	Ordinary Differential Equations
Basic Engineering Science Dep.	Code: BES 506
Post Graduate Examination, 2016-2017	Time Allowed : 3 hrs
Date of Exam: $07 / 06 / 2017$	

Answer all the following questions الومتحان في صفحتّن

Question 1 [25 Marks:

(A) Find the general solution of the following first order first degree ordinary differential equations:

1) $\frac{d y}{d x}=-\left(\frac{x}{y}\right)$ by all available different methods
2) $x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$
(B) Find the general and particular solution of the following first order first degree ordinary differential equations, thin explain the different between the general and particular solutions.
3) $\left(x y^{2}-y\right) d x+\left(x+x^{2} y\right) d y=0$
4) $\frac{d y}{d x}+y=\sin x, \quad y(\pi)=1$
(C) Find the general solution of the first order first degree ordinary differential equation:

$$
x \frac{d y}{d x}+y=y^{2} \ln x
$$

Question 2 [25 Marks

(A) Explain all cases of the integrating factor to reduce the first order first degree ordinary differential equation to an exact equation. Solve this equation as an example.

$$
\left(x^{2}-y^{2}\right) d x+x y d y=0
$$

(B) Find the general solution of the first order but not of first degree ordinary differential equations:

1) $\left(\frac{d y}{d x}\right)^{2}-(x+y) \frac{d y}{d x}+x y=0$
2) $\left(\frac{d y}{d x}\right)^{2}-2 x \frac{d y}{d x}+y=0$
(C) Find the general solution of the second order first degree ordinary differential equations:
1- 1) $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=4 x$
3) $y(y-1) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$

Question 3 [25 Miurks]

(A) Prove that if $y_{1}=e^{x}, y_{2}=e^{2 x}$, and $y_{3}=e^{3 x}$ are linearly independent functions. Find the homogeneous differential equation which the complement solution is:

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3} \text { where } c_{1}, c_{2} \text {, and } c_{3} \text { are constants }
$$

(B) Find the general solution of the non-homogenous system of differential equations:

$$
\frac{d^{2} x}{d t^{2}}-y=e^{2 t} \quad \text { and } \quad \frac{d y}{d t}-x=20
$$

(C) Find the total solution of the following non-homogenous differential equation by the linear differential operator method

$$
\frac{d^{4} x}{d t^{4}}-16 x=\cos ^{3}(t)
$$

Question 4 〔 25 Marks

(A) Find the total solution of the following non-homogenous differential equation by the undetermined coefficients method.

$$
x^{2} \frac{d^{2} y}{d x^{2}}-16 x \frac{d y}{d x}=x^{2}+\ln x
$$

(B) Find the total solution of the following non-homogenous differential equation by the undetermined coefficients method.

$$
\begin{aligned}
& \text { ned coefticients method. } \\
& {[(D)(D-1)(D-2)] x=\sin (t)+e^{2 x}+15, D=\frac{d}{d t}}
\end{aligned}
$$

(C) Show that the power series solution of the differential equation:
$(x+1) \frac{d^{2} y}{d x^{2}}+(x-1) \frac{d y}{d x}-2 y=0$, using the Leibniz-Maclaurin method is given by :
$y=1+x^{2}+e^{x}$, given the boundary conditions that at $x=0, y=\frac{d y}{d x}=1$.

